skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Provenza, Nicole R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many patients with mental illnesses characterized by impaired cognitive control have no relief from gold-standard clinical treatments resulting in a pressing need for new alternatives. This paper develops a neural decoder to detect task engagement in ten human subjects during a conflict-based behavioral task known as the multi-source interference task (MSIT). Task engagement is of particular interest here because closed-loop brain stimulation during those states can augment decision-making. The functional connectivity patterns of the electrodes are extracted. A principal component analysis of these patterns is carried out and the ranked principal components are used as inputs to train subject-specific linear support vector machine classifiers. In this paper, we show that task engagement can be differentiated from background brain activity with a median accuracy of 89.7%. This was accomplished by constructing distributed functional networks from local field potentials recording during the task performance. A further challenge is that goal-directed efforts take place over higher temporal resolution. Task engagement must thus be detected at a similar rate for proactive intervention. We show that our algorithms can detect task engagement from neural recordings in less than 2 seconds; this can be further improved using an application-specific device. 
    more » « less
  2. This paper analyzes local field potentials (LFP) from 10 human subjects to discover frequency-dependent biomarkers of cognitive conflict. We utilize cortical and sub-cortical LFP recordings from the subjects during a cognitive task known as the Multi-Source Interference Task (MSIT). We decode the task engagement and discover biomarkers that may facilitate closed-loop neuromodulation to enhance cognitive control. First, we show that spectral power features in predefined frequency bands can be used to classify task and non-task segments with a median accuracy of 88.1%. Here the features are first ranked using the Bayes Factor and then used as inputs to subject-specific linear support vector machine classifiers. Second, we show that theta (4–8 Hz) band, and high gamma (65–200 Hz) band oscillations are modulated during the task performance. Third, by isolating time-series from specific brain regions of interest, we observe that a subset of the dorsolateral prefrontal cortex features is sufficient to decode the task states. The paper shows that cognitive control evokes robust neurological signatures, especially in the prefrontal cortex (PFC). 
    more » « less